

The Chemistry of Life

Why are we studying chemistry?

Chemistry is the foundation of Biology

Everything is made of matter

Matter is made of atoms

Oxygen

8 protons

8 neutrons

8 electrons

Proton • +

Neutron © 0

Electron -

The World of Elements

Life requires ~25 chemical elements

- About 25 elements are essential for life
 - ◆ Four elements make up 96% of living matter:
 - carbon (C)

hydrogen (H)

oxygen (O)

- nitrogen (N)
- Four elements make up most of remaining 4%:
 - phosphorus (P)
- calcium (Ca)

sulfur (S)

potassium (K)

Bonding properties

- Effect of electrons
 - electrons determine chemical behavior of atom
 - depends on <u>number</u>
 of electrons in atom's
 outermost shell
 - valence shell

How does this atom behave?

Bonding properties

What's the magic number?

- Effect of electrons
 - chemical behavior of an atom depends on number of electrons in its valence shell

AP B How does this atom behave?

How does this atom behave?

Elements & their valence shells

AP Biolo sequential addition of electrons (& protons)

Elements & their valence shells

AP Biology

Chemical reactivity

- Atoms tend to
 - complete a partially filled valence shell or
 - empty a partially filled valence shell

This tendency drives chemical reactions...

Hydrogen bond

Bonds in Biology

- Weak bonds
 - hydrogen bonds
 - attraction between + and -
 - hydrophobic & hydrophilic interactions
 - interaction with H₂O
 - van derWaals forces
 - (ionic)
- Strong bonds
 - covalent bonds

Covalent bond

Covalent bonds

- Why are covalent bonds strong bonds?
 - two atoms share a pair of electrons
 - both atoms holding onto the electrons
 - very stable
- Forms molecules

Multiple covalent bonds

- 2 atoms can share >1 pair of electrons
 - double bonds
 - 2 pairs of electrons
 - triple bonds
 - 3 pairs of electrons
- Very strong bonds

Nonpolar covalent bond

- Pair of electrons shared equally by 2 atoms
 - ◆ <u>example</u>: hydrocarbons = C_xH_x

methane (CH₄)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

balanced, stable, good building block

Polar covalent bonds

- Pair of electrons <u>shared</u> <u>unequally</u> by 2 atoms
 - ◆ <u>example</u>: water = H₂O
 - oxygen has stronger "attraction" for the electrons than hydrogen
 - oxygen has higher electronegativity
 - water is a <u>polar molecule</u>
 - + vs poles
 - leads to many interesting properties of water...

Hydrogen bonding

- Polar water creates molecular attractions
 - attraction between positive H in one H₂O molecule to negative O in another H₂O
 - also can occur wherever an -OH exists in a larger molecule
- Weak bond

Chemistry of Life

Properties of Water

More about Water

Why are we studying water?

All life occurs in water

inside & outside the cell

Chemistry of water

 H₂O molecules form H-bonds with each other

- ◆ +H attracted to -O
- creates a sticky molecule

Elixir of Life

- Special properties of water
 - 1. cohesion & adhesion
 - surface tension, capillary action
 - 2. good solvent
 - many molecules dissolve in H₂O
 - hydrophilic vs. hydrophobic
 - 3. lower density as a solid
 - ice floats!
 - 4. high specific heat
 - water stores heat
 - 5. high heat of vaporization
 - heats & cools slowly

1. Cohesion & Adhesion

- Cohesion
 - ♦ H bonding between H₂O molecules
 - water is "sticky"
 - surface tension
 - drinking straw
- Adhesion

◆ H bonding between H₂O & other substances

- capillary action
- meniscus
- water climbs up paper towel or cloth

How does H₂O get to top of trees?

Transpiration is built on cohesion & adhesion

2. Water is the solvent of life

- Polarity makes H₂O a good solvent
 - ◆ polar H₂O molecules surround + & ions
 - ◆ solvents dissolve solutes creating solutions

What dissolves in water?

Hydrophilic

◆ substances have attraction to H₂O

polar or non-polar?

What doesn't dissolve in water?

Hydrophobic

substances that don't have

an attraction to H₂O

polar or non-polar?

fat (triglycerol)

AP Biology

Oh, look

hydrocarbons!

3. The special case of ice

Most (all?) substances are more dense when they are solid, but not water...

Ice floats!

H bonds form a crystal

And this has made all the difference!

Ice floats

Liquid water
Hydrogen bonds
constantly break and re-form

Why is "ice floats" important?

- Oceans & lakes don't freeze solid
 - surface ice insulates water below
 - allowing life to survive the winter
 - ♦ if ice sank...
 - ponds, lakes & even oceans would freeze solid
 - in summer, only upper few inches would thaw
 - seasonal turnover of lakes
 - sinking cold H₂O cycles nutrients in autumn

4. Specific heat

- H₂O resists changes in temperature
 - high specific heat
 - takes a lot to heat it up
 - takes a lot to cool it down
- H₂O moderates temperatures on Earth

Ionization of water & pH

- Water ionizes
 - ◆ H⁺ splits off from H₂O, leaving OH⁻
 - if [H+] = [-OH], water is neutral
 - if [H+] > [-OH], water is acidic
 - if [H+] < [⁻OH], water is basic</p>
- pH scale
 - how acid or basic solution is
 - \bullet 1 \rightarrow 7 \rightarrow 14

$$H_2O \rightarrow H^+ + OH^-$$

pH Scale

tenfold change in H+ ions

 $pH1 \rightarrow pH2$ $10^{-1} \rightarrow 10^{-2}$

10 times less H⁺

 $pH8 \rightarrow pH7$

 $10^{-8} \rightarrow 10^{-7}$

10 times more H⁺

 $pH10 \rightarrow pH8$

 $10^{-10} \rightarrow 10^{-8}$

100 times more H⁺

H+ Ion

Concentration

10⁰

10⁻¹ —

10-2

10⁻³

10-4

10⁻⁵ —

10-6

10-9

10-10

10-11 ----

10⁻¹² —

10-13 ---

10-14 ---

Examples of Solutions

рН

0 — Hydrochloric acid

— 2 —— Stomach acid, Lemon juice

— 3 — Vinegar, cola, beer

— 4 — Tomatoes

— 5 — Black coffee, Rainwater

—6 — Urine, Saliva

-7 — Pure water, Blood

−8 −− Seawater

─9 ── Baking soda

—10—— Great Salt Lake

—11 — Household ammonia

Household bleach

—13— Oven cleaner

-14 Sodium hydroxide

AP Biology

Buffers & cellular regulation

- pH of cells must be kept ~7
 - pH affects shape of molecules
 - shape of molecules affect function
 - pH affects cellular function
- Control pH by <u>buffers</u>
 - ◆ reservoir of H⁺
 - donate H+ when [H+] falls
 - absorb H+ when [H+] rises

Ice Fishing in Barrow, Alaska

