More Basic Biotechnology Tools

Sorting & Copying DNA

Many uses of restriction enzymes...

- Now that we can cut DNA with restriction enzymes...
 - we can cut up DNA from different people... or different organisms... and compare it
 - why?
 - forensics
 - medical diagnostics
 - paternity
 - evolutionary relationships
 - and more...

AP Biology

Comparing cut up DNA

- How do we compare DNA fragments?
 - ◆ separate fragments by size
- How do we separate DNA fragments?
 - run it through a gelatin
 - agarose
 - made from algae
 - gel electrophoresis

Gel electrophoresis

- A method of separating DNA in a gelatin-like material using an electrical field
 - DNA is negatively charged
 - when it's in an electrical field it moves toward the positive side

Gel electrophoresis

- DNA moves in an electrical field...
 - so how does that help you compare DNA fragments?
 - size of DNA fragment affects how far it travels
 - small pieces travel farther
 - large pieces travel slower & lag behind

Gel Electrophoresis

Running a gel

fragments of DNA separate out based on size

Stain DNA

- ethidium bromide binds to DNA
- fluoresces under UV light

Uses: Evolutionary relationships

 Comparing DNA samples from different organisms to measure evolutionary relationships

turtle snake rat squirrel fruitfly

Uses: Medical diagnostic

Comparing normal allele to disease allele

chromosome with normal allele 1 chromosome with disease-causing allele 2

Example: test for Huntington's disease

Uses: Forensics

 Comparing DNA sample from crime scene with suspects & victim

DNA fingerprints

- Comparing blood samples on defendant's clothing to determine if it belongs to victim
 - DNA fingerprinting
 - comparing DNA banding pattern between different individuals
 - ~unique patterns

Differences at the DNA level

- Why is each person's DNA pattern different?
 - sections of "junk" DNA
 - doesn't code for proteins
 - made up of repeated patterns
 - CAT, GCC, and others
 - each person may have different number of repeats
 - many sites on our 23 chromosomes with different repeat patterns

GCTTGTAACGGCCTCATCATCATTCGCCGGCCTACGCTTCGAACATTGCCGGAGTAGTAGTAAGCGGCCGGATGCGAA

GCTTGTAACGGCATCATCATCATCATCCGGCCTACGC CGAACATTGCCGTAGTAGTAGTAGTAGGCCGGATGC

DNA patterns for DNA fingerprints

Differences between people

AP Biology

Allele 1 cut sites cut sites GCTTGTAACGGCCTCATCATCATTCGCCGGCCTACGCTT CGAACATTGCCGGAGTAGTAGTAAGCGGCCGGATGCGAA Allele 2: more repeats **GCTTGTAACGGCCTCATCATCATCATCATCCGGCCTA** CGAACATTGCCGGAGTAGTAGTAGTAGTAGGCCGGA **DNA** fingerprint DNA allele 1 allele 2

RFLPs

Longer

fragments

(b) Electrophoresis of restriction fragments

- Restriction Fragment Length Polymorphism
 - differences in DNA between individuals

Shorter

fragments

 creates different fragment sizes & different band pattern

Polymorphisms in populations

- Differences between individuals at the DNA level
 - many differences accumulate in "junk" DNA

RFLP / electrophoresis use in forensics

- 1st case successfully using DNA evidence
 - ◆ 1987 rape case convicting Tommie Lee Andrews

Electrophoresis use in forensics

- Evidence from murder trial
 - Do you think suspect is guilty?

OJ Simpson

N Brown

R Goldman

Uses: Paternity

Who's the father?

Making lots of copies of DNA

But it would be so much easier if we didn't have to use bacteria every time...

Copy DNA without plasmids? PCR!

- Polymerase Chain Reaction
 - method for making many, many copies of a specific segment of DNA
 - ~only need 1 cell of DNA to start

No more bacteria, No more plasmids, No more E. coli smelly looks!

PCR process

- It's copying DNA in a test tube!
- What do you need?
 - template strand
 - DNA polymerase enzyme
 - nucleotides
 - ATP, GTP, CTP, TTP
 - primer

PCR primers

- The primers are critical!
 - need to know a bit of sequence to make proper primers
 - primers can bracket target sequence
 - start with long piece of DNA & copy a specified shorter segment
 - primers define section of DNA to be cloned

20-30 cycles 3 steps/cycle 30 sec/step

PCR process

- What do you need to do?
 - ♦ in tube: DNA, DNA polymerase enzyme, primer, nucleotides
 - denature DNA: heat (90°C) DNA to separate strands
 - anneal DNA: cool to hybridize with primers & build DNA (extension)

by heating

Renaturation

The polymerase problem

- Heat DNA to denature (unwind) it
 - ◆ 90°C destroys DNA polymerase
 - have to add new enzyme every cycle
 - almost impractical!
- Need enzyme that can withstand 90°C...
 - Taq polymerase
 - from hot springs bacteria
 - Thermus aquaticus

Kary Mullis

- development of PCR technique
 - a copying machine for DNA

Gel Electrophoresis Results

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.