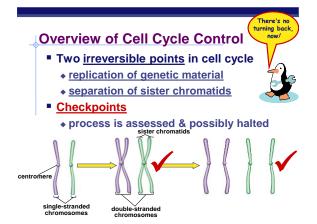


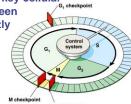
Regulation of Cell Division

Coordination of cell division

- A multicellular organism needs to coordinate cell division across different tissues & organs
 - + critical for normal growth,
 - development & maintenance
 - coordinate timing of cell division
 - coordinate rates of cell division
 - not all cells can have the same <u>cell cycle</u>


AP Biology

Frequency of cell division


- Frequency of cell division varies by cell type
 - embryo
 - cell cycle < 20 minute</p>
 - skin cells
 - divide frequently throughout life
 12-24 hours cycle
 - liver cells
 - retain ability to divide, but keep it in reserve
 - divide once every year or two metaphase ana m
 - mature nerve cells & muscle cells
 - do not divide at all after maturity
 - permanently in G₀

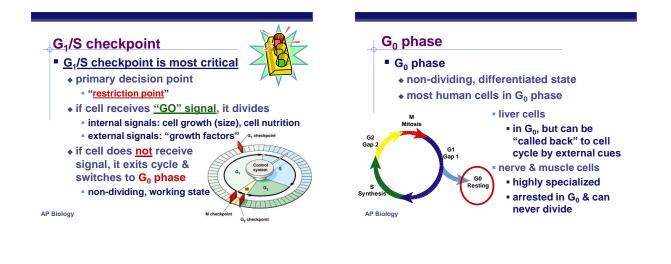
s interphase (G₁, S, G₂ phases) mitosis (M) s cytokinesis (C)

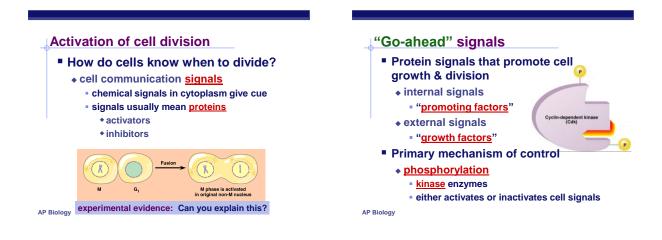
Checkpoint control system

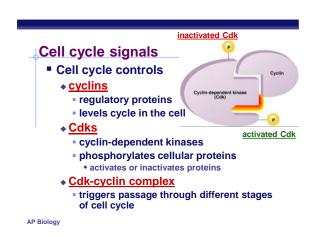
- Checkpoints
 - cell cycle controlled by <u>STOP</u> & <u>GO</u> chemical signals at critical points
 - signals indicate if key cellular processes have been completed correctly

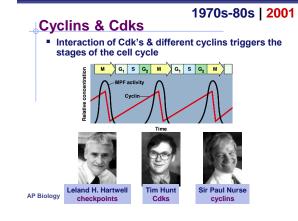
AP Biology

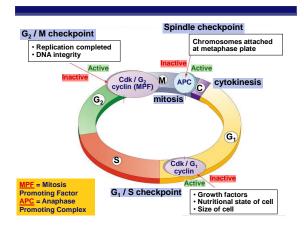
AP Biology

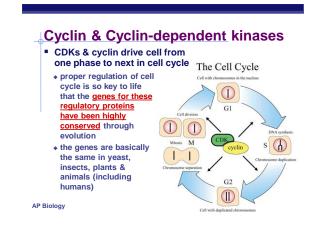

Checkpoint control system

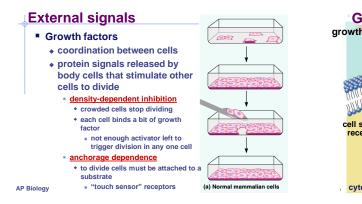

- 3 major checkpoints:
 - ◆ <u>G₁/S</u>
 - can DNA synthesis begin?
 - G₂/M
 G_y/M G_y/M Checkpoint Spindle checkpoint
 has DNA synthesis been completed correctly?
 commitment to mitosis
 spindle checkpoint


G₁ / S checkpoint (Start or Restriction Point)


- are all chromosomes attached to spindle?
 can sister chromatids
- separate correctly?


AP Biology

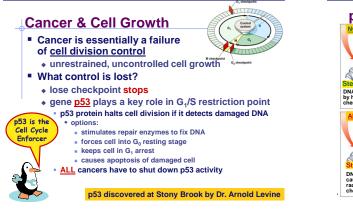






Growth Factors and Cancer

Growth factors can create cancers


proto-oncogenes

- normally activates cell division
 - growth factor genes
 - become oncogenes (cancer-causing) when mutated
- if switched <u>"ON</u>" can cause cancer
- example: RAS (activates cyclins)

tumor-suppressor genes

- normally inhibits cell division
- if switched <u>"OFF</u>" can cause cancer
- example: p53

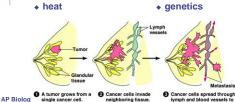
AP Biology

p53 — master regulator gene RMAL p53 p53 allows cells with repaired DNA to divide. 0 \bigcirc 6 DNA repair enzyme p53 protein Step 3 0 DNA damage is caused by heat, radiation, or Cell division stops, and p53 triggers enzymes to repair damaged region. p53 triggers the destruction of cells damaged beyond repair BNORMAL p53 . 0 0 -0 0 0 p53 prote 6 0 0 0 0 The p53 protein fails to stop cell division and repair DNA. Cell divides without repair to damaged DNA. Damaged cells continue to divide chemicals I can turn

Development of Cancer

- Cancer develops only after a cell experiences
 - ~6 key mutations ("hits")
 - unlimited growth turn on growth promoter genes
 - ignore checkpoints
 - turn off tumor suppressor genes (p53) escape apoptosis
 - turn off suicide genes
 - immortality = unlimited divisions turn on chromosome maintenance genes
 - promotes blood vessel growth turn on blood vessel growth genes overcome anchor & density dependence
- turn off touch-sensor gene
- AP Biology

er cells do not exhibi rage dependence or ly-dependent inhibiti


It's like an

out-of-control

(b) Cancer cells

- radiation exposure
- heat

Tumors

- Mass of abnormal cells
 - Benign tumor
 - abnormal cells remain at original site as a lump
 - p53 has halted cell divisions
 - most do not cause serious problems & can be removed by surgery

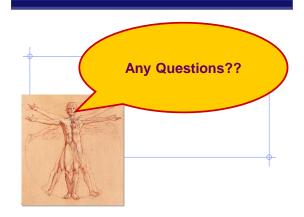
Malignant tumor

- cells leave original site
 - + lose attachment to nearby cells
 - carried by blood & lymph system to other tissues
 - * start more tumors = metastasis
- impair functions of organs throughout body

AP Biology

Traditional treatments for cancers

Treatments target rapidly dividing cells


- high-energy radiation kills rapidly dividing cells
- chemotherapy
- stop DNA replication
- stop mitosis & cytokinesis
- stop blood vessel growth

New "miracle drugs"

- Drugs targeting proteins (enzymes) found only in cancer cells
 - ♦ Gleevec
 - treatment for adult leukemia (CML)
 - & stomach cancer (GIST)
 - Ist successful drug targeting only cancer cells

