Biology is the only subject in which multiplication is the same thing as division…

The Cell Cycle: Cell Growth, Cell Division

Getting from there to here…
- Going from egg to baby….
 - the original fertilized egg has to divide…
 - and divide…
 - and divide…
 - and divide…

Why do cells divide?
- For reproduction
 - asexual reproduction
 - one-celled organisms
- For growth
 - from fertilized egg to multi-celled organism
- For repair & renewal
 - replace cells that die from normal wear & tear or from injury

Making new cells
- Nucleus
 - chromosomes
 - DNA
- Cytoskeleton
 - centrioles
 - in animals
 - microtubule spindle fibers

Nucleus
- Function
 - protects DNA
- Structure
 - nuclear envelope
 - double membrane
 - membrane fused in spots to create pores
 - allows large macromolecules to pass through... What kind of molecules need to pass through?
The Cytoskeleton

- **Function**
 - **structural support**
 - maintains shape of cell
 - provides anchorage for organelles
 - protein fibers
 - microfilaments, intermediate filaments, microtubules
 - **motility**
 - cell locomotion
 - cilia, flagella, etc.
 - **regulation**
 - organizes structures & activities of cell

- **Centrioles**
 - **Cell division**
 - in animal cells, pair of centrioles organize microtubules
 - spindle fibers
 - guide chromosomes in mitosis

- **Getting the right stuff**
 - What is passed on to daughter cells?
 - exact copy of genetic material = DNA
 - mitosis
 - organelles, cytoplasm, cell membrane, enzymes
 - cytokinesis

- **End of the Tour**
 - chromosomes (stained orange) in kangaroo rat epithelial cell
 - notice cytoskeleton fibers
Overview of mitosis

- **Interphase**
 - 90% of cell life cycle
 - Cell doing its “everyday job”
 - Produce RNA, synthesize proteins/enzymes
 - Prepares for duplication if triggered

Interphase
- Divided into 3 phases:
 - \(G_1 \) = 1st Gap (Growth)
 - Cell doing its “everyday job”
 - Cell grows
 - DNA synthesis
 - Copies chromosomes
 - \(G_2 \) = 2nd Gap (Growth)
 - Prepares for division
 - Cell grows (more)
 - Produces organelles, proteins, membranes

Cell cycle
- Cell has a “life cycle”
 - Cell is formed from a mitotic division
 - Cell grows & matures to divide again
 - Cell grows & matures to never divide again
 - \(G_1, S, G_2, M \)
 - Liver cells
 - Epithelial cells, blood cells, stem cells
 - Brain / nerve cells
 - Muscle cells

Interphase
- Nucleus well-defined
 - DNA loosely packed in long chromatin fibers
- Prepares for mitosis
 - Replicates chromosome
 - DNA & proteins
 - Produces proteins & organelles

S phase: Copying / Replicating DNA
- Synthesis phase of Interphase
 - Dividing cell replicates DNA
 - Must separate DNA copies correctly to 2 daughter cells
 - Human cell duplicates ~1-2 meters DNA
 - Each daughter cell gets complete identical copy
 - Error rate = ~1 per 100 million bases
 - 3 billion base pairs in mammalian genome
 - ~30 errors per cell cycle
 - Mutations (to somatic (body) cells)
Organizing DNA

- DNA is organized in **chromosomes**
 - double helix DNA molecule
 - wrapped around **histone proteins**
 - like thread on spools
 - DNA-protein complex = **chromatin**
 - organized into long thin fiber
 - condensed further during mitosis

Copying DNA & packaging it...

- After DNA duplication, chromatin **condenses**
 - coiling & folding to make a smaller package

Mitotic Chromosome

- Duplicated chromosome
 - 2 **sister chromatids**
 - narrow at **centromeres**
 - contain identical copies of original DNA

Mitosis

- Dividing cell’s DNA between 2 daughter nuclei
 - “dance of the chromosomes”
- 4 phases
 - **prophase**
 - **metaphase**
 - **anaphase**
 - **telophase**

Prophase

- Chromatin condenses
 - **visible chromosomes**
 - **chromatids**
- **Centrioles** move to opposite poles of cell
 - animal cell
- Protein fibers cross cell to form **mitotic spindle**
 - microtubules
 - actin, myosin
 - coordinates movement of chromosomes
- **Nucleolus disappears**
- **Nuclear membrane breaks down**
Transition to Metaphase

- **Prometaphase**
 - Spindle fibers attach to centromeres
 - Creating kinetochores
 - Microtubules attach at kinetochores
 - Connect centromeres to centrioles
 - Chromosomes begin moving

Metaphase

- **Chromosomes align along middle of cell**
 - **Prometaphase**
 - Meta = middle
 - Spindle fibers coordinate movement
 - Helps to ensure chromosomes separate properly
 - So each new nucleus receives only 1 copy of each chromosome

Anaphase

- **Sister chromatids separate at kinetochores**
 - Move to opposite poles
 - Pulled at centromeres
 - Pulled by motor proteins “walking” along microtubules
 - Actin, myosin
 - Increased production of ATP by mitochondria
 - Poles move farther apart
 - Polar microtubules lengthen

Separation of chromatids

- In anaphase, proteins holding together sister chromatids are inactivated
 - Separate to become individual chromosomes

Chromosome movement

- Kinetochores use motor proteins that “walk” chromosome along attached microtubule
 - Microtubule shortens by dismantling at kinetochore (chromosome) end
Telophase
- Chromosomes arrive at opposite poles
 - daughter nuclei form
 - nucleoli form
 - chromosomes disperse
 - no longer visible under light microscope
- Spindle fibers disperse
- Cytokinesis begins
 - cell division

Cytokinesis
- Animals
 - constriction belt of actin microfilaments around equator of cell
 - cleavage furrow forms
 - splits cell in two
 - like tightening a draw string

Cytokinesis in Animals
- Animals
 - constriction belt of actin microfilaments around equator of cell
 - cleavage furrow forms
 - splits cell in two
 - like tightening a draw string

Mitosis in whitefish blastula
- Inteplase
- Prophase
- Metaphase

Mitosis in animal cells
- Interphase
- Prophase
- Metaphase

Cytokinesis in Plants
- Plants
 - cell plate forms
 - vesicles line up at equator
 - derived from Golgi
 - vesicles fuse to form 2 cell membranes
 - new cell wall laid down between membranes
 - new cell wall fuses with existing cell wall

Cytokinesis in Plants
- Cells
 - daughter nuclei form
 - nucleoli form
 - chromosomes disperse
 - no longer visible under light microscope
- Spindle fibers disperse
- Cytokinesis
 - cell division

Cytokinesis in Plants
- Plants
 - constriction belt of actin microfilaments around equator of cell
 - cleavage furrow forms
 - splits cell in two
 - like tightening a draw string
Mitosis in plant cell

Cytokinesis in plant cell

Evolution of mitosis

- Mitosis in eukaryotes likely evolved from binary fission in bacteria
 - Single circular chromosome
 - No membrane-bound organelles

A possible progression of mechanisms intermediate between binary fission & mitosis seen in modern organisms

Any Questions??
Control of Cell Cycle

- **Interphase**: The cell will continue to grow and produce new proteins required for cell division.
- **G1**: Cells increase in size, produce RNA and protein synthesis.
- **S**: DNA is replicated.
- **G2**: Cells increase in size, produce RNA and protein synthesis.
- **M (Mitosis)**: Cells divide into two daughter cells.

Kinetochore

- Each chromatid has its own kinetochore proteins.
- Microtubules attach to kinetochore proteins.

Chromosome structure

- Scaffold protein
- Chromatin loop
- 30 nm thick DNA filament
- Nucleosome
- Histone
- Rosettes of chromatin loops
- Chromosome

DNA double helix

Nucleosome