

Cells gotta work to live!

- What jobs do cells have to do?
 - make proteins
 - proteins control every cell function
 - make energy
 - for daily life
 - for growth
 - make more cells
 - growth
 - repair
 - renewal

Cells need power! Making energy take in food & digest it ◆ take in oxygen (O₂) make ATP remove waste **AP Biology**

(b) A lysosome in action

1960 | 1974

Lysosomes

AP Biology

Lysosomes discovery in 1960s

Cellular digestion

-some = body

Lysosomes fuse with food vacuoles

• polymers Plasma digested intomembrane Rough ER monomers **Transport vesicle** pass to cytosol to become Golgi nutrients of apparatus cell Food vacuole Lysosomes Autophagy Phagocytosis Food vacuole Iyso- = breaking things apart

Digestion

Lysosomal enzymes

- Lysosomal enzymes work best at pH 5
 - organelle creates custom pH
 - how?
 - proteins in lysosomal membrane pump H⁺ ions from the cytosol into lysosome
 - why?
 - enzymes are very sensitive to pH
 - why?
 - enzymes are proteins pH affects structure
 - why evolve digestive enzymes which function at pH different from cytosol?
 - digestive enzymes won't function well if some leak into cytosol = don't want to digest yourself!

When things go bad...

Diseases of lysosomes are often fatal

- digestive enzyme not working in lysosome
- picks up biomolecules, but can't digest one
 - Iysosomes fill up with <u>undigested</u> material
- grow larger & larger until disrupts cell & organ function
 - Iysosomal storage diseases
 - more than 40 known diseases
 - example:

Tay-Sachs disease build up undigested fat in brain cells

Lysosomal storage diseases

- Lipids
 - Gaucher's disease
 - Niemann-Pick disease
 - Tay Sachs
- Glycogen & other poylsaccharides
 - Farber disease
 - Krabbe disease
- Proteins
 - Schindler's disease

But sometimes cells need to die...

- Lysosomes can be used to kill cells when they are supposed to be destroyed
 - some cells have to die for proper development in an organism
 - <u>apoptosis</u>
 - "auto-destruct" process
 - Iysosomes break open & kill cell
 - ex: tadpole tail gets re-absorbed when it turns into a frog
 - ex: loss of webbing between your fingers during fetal development

Fetal development

6 weeks

Before

syndactyly

Apoptosis

- programmed destruction of cells in multicellular organisms
 - programmed development
 - control of cell growth
 - example:
 - if cell grows uncontrollably this <u>self-destruct</u> <u>mechanism</u> is triggered to remove damaged cell
 - cancer must over-ride this to enable tumor growth

Making Energy

- Cells must convert incoming energy to forms that they can use for work
 - mitochondria: from glucose to ATP
 - chloroplasts:
 - from sunlight to ATP & carbohydrates
 - ATP = active energy
 - carbohydrates = stored energy

Mitochondria & Chloroplasts Important to see the similarities transform energy generate ATP • double membranes = 2 membranes semi-autonomous organelles move, change shape, divide internal ribosomes, DNA & enzymes Outer membrane Outer membrane Inner membrane Inner membrane

Mitochondria

- Function
 - <u>cellular respiration</u>
 - senerate ATP
 - from breakdown of sugars, fats
 & other fuels
 - in the presence of <u>oxygen</u>
 - break down larger molecules into smaller to generate energy = <u>catabolism</u>
 - generate energy in presence of O₂ = <u>aerobic respiration</u>

Mitochondria

- Structure
 - 2 membranes
 - smooth outer membrane
 - highly folded inner membrane ma
 - <u>cristae</u>
 - fluid-filled space between
 2 membranes
 - internal fluid-filled space
 - mitochondrial matrix
 - DNA, ribosomes & enzymes

Why 2 membranes?

increase surface area for membranebound enzymes that synthesize ATP

Membrane-bound Enzymes

AP Biology

the evolution of eukaryotes?

Mitochondria

Almost all eukaryotic cells have mitochondria

- there may be 1 very large mitochondrion or 100s to 1000s of individual mitochondria
- number of mitochondria is correlated with aerobic metabolic activity
 - more activity = more energy needed = more mitochondria

What cells would have a lot of mitochondria?

active cells:muscle cells

AP Biole • nerve cells

Mitochondria are everywhere!!

animal cells

plant cells

Chloroplasts

- Chloroplasts are <u>plant</u> organelles
 - Is class of plant structures = plastids

<u>amyloplasts</u>

- store starch in roots & tubers
- chromoplasts
 - store pigments for fruits & flowers
- chloroplasts
 - store chlorophyll & function in photosynthesis
 - in leaves, other green structures of plants & in eukaryotic algae

Chloroplasts

- Structure
 - 2 membranes

- stroma = internal fluid-filled space
 - DNA, ribosomes & enzymes
 - thylakoids = membranous sacs where ATP is made
 - grana = stacks of thylakoids

Why internal sac membranes?

AP Bioincrease surface area for
membrane-bound enzymesAP Biothat synthesize ATP

Chloroplasts

- Function
 - photosynthesis

DNA

ribosomes

cell

cell

wall

membrane

- generate ATP & synthesize sugars
 - transform solar energy into chemical energy
 - produce sugars from CO₂ & H₂O
- Semi-autonomous
 - moving, changing shape & dividing
 - can reproduce by pinching in two

Who else divides like that?

bacteria!

Mitochondria & chloroplasts are different

- Organelles not part of <u>endomembrane</u> system
- Grow & reproduce
 - semi-autonomous organelles
- Proteins primarily from free ribosomes in cytosol & a few from their own ribosomes
- Own circular chromosome
 - directs synthesis of proteins produced by own internal ribosomes
 - ribosomes like bacterial ribosomes

Who else has a circular chromosome not bound within a nucleus?

bacteria

1981 | ??

Endosymbiosis theory

- Mitochondria & chloroplasts were once free living bacteria
 - engulfed by ancestral eukaryote
- Endosymbiont
 - cell that lives within another cell (host)
 - as a partnership
 - evolutionary advantage for both
 - one supplies energy
 - the other supplies raw materials
 & protection

Lynn Margulis U of M, Amherst

Compare the equations

Photosynthesis

carbon + water + energy → glucose + oxygen dioxide

 $6CO_2 + 6H_2O + \begin{array}{c} \text{light} \\ \text{energy} \end{array} \rightarrow C_6H_{12}O_6 + 6O_2$

Respiration

glucose + oxygen \rightarrow carbon + water + energy dioxide $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + ATP$

Vacuoles & vesicles

- Function
 - Iittle "transfer ships"
 - Food vacuoles

Central vacuole

Nucleus

Cell wa

Chloroplas

Cytosol

Tonoplas

Centra

- phagocytosis, fuse with lysosomes
- Contractile vacuoles
 - in freshwater protists, pump excess H₂O out of cell
- Central vacuoles
 - in many mature plant cells

Vacuoles in plants

Functions

- storage
 - stockpiling proteins or inorganic ions
 - depositing metabolic byproducts
 - storing pigments
 - storing defensive compounds against herbivores
 - selective membrane
 - control what comes in or goes out

Peroxisomes

Other digestive enzyme sacs

- In both animals & plants
- breakdown fatty acids to sugars
 - easier to transport & use as energy source
- detoxify cell
 - detoxifies alcohol & other poisons
- produce peroxide (H₂O₂)
 - must breakdown

 $H_2O_2 \rightarrow H_2O$

